Как работает радиоинтерфейс в gsm-сетях

Поддержка старых стандартов

Как известно, сотовым операторам приходится размещать на своих вышках гору оборудования. В теории можно было бы заменить 2G-передатчики на 3G-передатчики. Но сделать это — значит лишить связи владельцев мобильных телефонов, работающих только в стандарте GSM. Это привело бы к огромным убыткам, так как даже сейчас подобными аппаратами пользуется огромное число людей — все они тут же перешли бы к другому оператору. Вот и получается, что оборудование приходится дополнять, а не менять.

В обозримом будущем отказа от устаревших стандартов не случится. Объясняется это двумя причинами:

  • Кнопочные телефоны до сих пор производятся, а они зачастую не поддерживают даже 3G, не говоря уже о сетях четвертого поколения;
  • 2G-оборудование покрывает сетью более обширную территорию, нежели 3G- или 4G-передатчики аналогичной мощности — это позволяет избавить определенную территорию от «белых пятен».

Теперь вы знаете об основных отличиях разных стандартов. Если вкратце, то в первую очередь изменению подвергались ёмкость сот, ширина покрытия (каждый раз в меньшую сторону, так как таковы законы более высокочастотных сигналов) и скорость передачи данных.

Канальный уровень

Телеметрия

Каждый КА, по стандартам CCSDS должен иметь свой уникальный идентификатор, по которому можно, имея кадр, определить, какому аппарату он принадлежит. Формально необходимо подавать заявку на регистрацию аппарата, и его название, вместе с идентификатором, будет опубликовано в открытых источниках. Однако часто Российские производители игнорируют данную процедуру, присваивая аппарату произвольный идентификатор. Номер версии кадра помогает определить какая версия стандартов используется, чтобы правильно прочитать кадр. Здесь мы рассмотрим только самый консервативный стандарт с версией «0».Очень часто возникает необходимость мультиплексировать передаваемые данные. Для этого существует механизм виртуальных каналов. Например, спутник Метеор-М2 передаёт цветное изображение в видимом диапазоне, разделяя его на три чёрно-белых – каждый цвет передаётся в своём виртуальном канале отдельным пакетом, хотя в структуре его кадров есть некоторое отклонение от стандартов.Счётчики кадров главного и виртуального канала – это поля, увеличиваемые на единицу при отправке каждого кадра. Служат индикатором того, что ни один кадр не был потерян.При желании можно добавить к каждому кадру дополнительный заголовок и размещать там любые данные на своё усмотрение.То есть пакет может, предположим, начинаться в середине 4-го кадра, и заканчиваться в начале 20-го. Чтобы найти его начало, как раз служит это поле. У пакетов тоже есть заголовок, в котором прописана его длина, поэтому при нахождении указателя на первый заголовок обработчик канального уровня должен его прочитать, тем самым определив, где закончится пакет.

Телекоманды

  1. Другая структура заголовков
  2. Динамическая длина. Это значит, что длина кадра не задана жёстко, как это сделано в телеметрии, а может изменяться в зависимости от передаваемых пакетов.
  3. Механизм гарантии доставки пакетов. То есть КА должен после получения подтвердить корректность приёма кадров, либо запросить пересылку с того кадра, который мог быть принят с некорректируемой ошибкой.

Этот флаг информирует приёмник, нужно ли использовать механизм подтверждения доставки кадров, который называется FARM — Frame Acceptance and Reporting Mechanism.FARM представляет собой конечный автомат, параметры которого можно настраивать.Похоже, у CCSDS есть на них планы в будущем, и для обратной совместимости версий протокола они зарезервировали эти биты уже в нынешних версиях стандарта.

  • целое число октетов пользовательских данных
  • заголовок сегмента и следующие за ним целое число октетов пользовательских данных
  • «01» — если первая часть данных находится в блоке данных
  • «00» — если средняя часть данных находится в блоке данных
  • «10» — если последняя часть данных находится в блоке данных
  • «11» — если нет деления и в блоке данных помещается целиком один или несколько пакетов.

Иногда 6 бит, отведённых на виртуальные каналы, бывает недостаточно. И если необходимо мультиплексировать данные на большее число каналов, в ход идут ещё 6 бит из заголовка сегмента.

Технология

Следующая ниже информация не применима к сетям, отличным от UMTS, но использующим радио-интерфейс W-CDMA: таким, как например FOMA

UMTS развёртывается путём внедрения технологий радио-интерфейса W-CDMA, TD-CDMA, или TD-SCDMA на «ядро» GSM. В настоящий момент большинство операторов, работающих как на сетях UMTS, так и других стандартов типа FOMA, выбирают в качестве технологии воздушного интерфейса W-CDMA.

Радио-интерфейс UMTS использует в своей работе пару каналов с шириной полосы 5 МГц. Для сравнения, конкурирующий стандарт CDMA2000 использует один или несколько каналов с полосой частот 1,25 МГц для каждого соединения. Здесь же кроется и недостаток сетей связи, использующих W-CDMA: неэкономичная эксплуатация спектра и необходимость освобождения уже занятых под другие службы частот, что замедляет развёртывание сетей, как, например, в США.

Согласно спецификациям стандарта, UMTS использует следующий спектр частот: 1885 МГц — 2025 МГц для передачи данных в режиме «от мобильного терминала к базовой станции» и 2110 МГц — 2200 МГц для передачи данных в режиме «от станции к терминалу». В США по причине занятости спектра частот в 1900 МГц сетями GSM выделены диапазоны 1710 МГц — 1755 МГц и 2110 МГц — 2155 МГц соответственно. Кроме того, операторы некоторых стран (например, американский AT&T Mobility) дополнительно эксплуатируют полосы частот 850 МГц и 1900 МГц. Далее, правительство Финляндии на законодательном уровне поддерживает развитие сети стандарта UMTS900, покрывающей труднодоступные районы страны и использующей диапазон 900 МГц (в данном проекте участвуют такие компании как Nokia и Elisa).

Для операторов связи, уже оказывающих услуги в формате GSM, переход в формат UMTS представляется лёгким с технической точки зрения и значительно затратным одновременно: при создании сетей нового уровня сохраняется значительная часть прежней инфраструктуры, но вместе с тем получение лицензий и приобретение нового оборудования для базовых станций требует значительных капиталовложений.

Основным отличием UMTS от GSM является построение воздушной среды передачи данных на принципах Сети Общего Радиодоступа GeRAN. Это позволяет осуществлять стыки UMTS с цифровыми сетями интегрированного обслуживания ISDN, сетью Internet, сетями GSM или другими сетями UMTS. Сеть общего радиодоступа GeRAN включает три нижних уровня модели OSI (Open Systems Interconnection Model — модель Взаимодействия Открытых Систем), верхний из которых (третий, сетевой уровень) составляют протоколы, образующие системный уровень управления радиоресурсами (протокол RRM). Этот уровень ответственен за управление каналами между мобильными терминалами и сетью базовых станций (в том числе передача обслуживания терминала между базовыми станциями).

Предоставляемые услуги

GSM обеспечивает поддержку следующих услуг:

  • Услуги передачи данных (синхронный и асинхронный обмен данными, в том числе пакетная передача данных — GPRS). Данные услуги не гарантируют совместимость терминальных устройств и обеспечивают только передачу информации к ним и от них.
  • Передача речевой информации.
  • Передача коротких сообщений (SMS).
  • Передача факсимильных сообщений.

Дополнительные (необязательные к предоставлению) услуги:

  • Определение вызывающего номера и ограничение такого определения.
  • Безусловная и условная переадресация вызова на другой номер.
  • Ожидание и удержание вызова.
  • Конференц-связь (одновременная речевая связь между тремя и более подвижными станциями).
  • Запрет на определённые пользователем услуги (международные звонки, роуминговые звонки и др.)
  • Голосовая почта.

и многие другие услуги.

Преимущества и недостатки NB-IoT

Как обычно, преимущества и недостатки напрямую связаны друг с другом: если где-то прибыло, то где-то убыло. Здесь просто перечислю их с небольшими комментариями, а детали обсудим позже.

Преимущества NB-IoT

  • Низкое энергопотребление оконечных устройств (при использовании режимов энергосбережения PSM и eDRX)
  • Большой энергетический бюджет линии связи (GSMA называла цифру 164 дБ)
  • Теоретически глобальное покрытие
  • Теоретически низкая стоимость модемов (модулей) и услуг связи

Недостатки NB-IoT

  • Возможны большие задержки связи при использовании режимов энергосбережения. Дело в том, что оконечное устройство, находясь в режимах энергосбережения, оказывается недоступно со стороны сети (сервера приложений). Максимальная задержка при использовании режима eDRX определяется максимальным периодом eDRX, который составляет 10485,76 секунды, т.е. почти 3 часа. Максимальная задержка при использовании режима PSM определяется максимальным временем нахождения устройства в режиме PSM – 9920 часов, что составляет 413 дней и 8 часов, т.е. больше 1 года! Режимы энергосбережения подробно обсуждаются в следующей части
  • Отсутствие поддержки мобильности
  • Низкие скорости приёма и передачи данных (см. ниже)

Преимущества технологии NB-IoT

NB-IoT был разработан консорциумом 3GPP в 2016 году. Сейчас эта технология находится на стадии тестирования. Но уже в ближайшее время операторы связи получат полноценный доступ к ней. Более того, можно не сомневаться в том, что технология NB-IoT сразу же станет популярной. Это обусловлено финансовой выгодностью применения данного стандарта. Использование и обслуживание NB-IoT на порядок дешевле применения GSM и LTE сетей. Данный факт объясняется тем, что NB-IoT – это 2-сторонняя связь, которая работает на частотном канале 200 кГц. Для запуска сети в работу оператору нужно только лишь установить на своей станции специализированное ПО. Учитывая этот факт, NB-IoT будет, прежде всего, актуален в процессе развертывания сети на существующих частотах.

Консорциум 3GPP продолжает разрабатывать модель работы NB-IoT сети. Специалисты этой организации выбирают между тремя вариантами развертывания:

  • Guard Band. В данном случае для работы сети будет использоваться отдельный частотный спектр.
  • In Band. Данная технология предусматривает размещение в защитном частотном диапазоне LTE-сетей.
  • Stand Alone. Концепция этого варианта развертывания предусматривает функционирование LTE и NB-IoT в едином частотном диапазоне.

Благодаря разработкам консорциума 3GPP, появится возможность развертывания NB-IoT сетей во всех частотных диапазонах, в которых применяется стандарт LTE. При этом стандарт NB-IoT способен передавать данные со скоростью 200 Кб/с. Этого показателя хватает для беспроблемной работы устройств, передающих с определенной периодичностью небольшой объем информации одного типа.

Разработчики этой технологии уже успели пообещать, что максимальный срок эксплуатации аккумуляторов оборудования NB-IoT может достигать 10 лет. Также следует сказать, что ориентировочная стоимость терминала NB-IoT составит 5 долларов.

Еще одним чрезвычайно важным преимуществом этой технологии считается возможность подключения порядка 100 000 NB-IoT устройств к одной соте станции. Этот показатель на порядок выше нынешних стандартов сотовой связи. За счет этого обеспечивается дополнительное коммерческое преимущество, обусловленное возможностью использования анализа IoT-данных посредством методов Big Data. Благодаря этой технологии, операторы сотовой связи получат уникальную возможность продавать полученные аналитические сводки организациям, работающим в смежных сферах деятельности.

Подобные преимущества технологии NB-IoT способствуют существенному увеличению зоны покрытия и возможности использования мобильной связи в труднодоступных регионах.

Скорости передачи данных в NB-IoT

Если в спецификациях 3GPP Release 13 был определен только один вариант NB-IoT – Category NB1, то в спецификациях 3GPP Release 14 появилось 2 варианта: Category NB1 и NB2. Вариант Category NB2 является более скоростным. Для сравнения возможностей NB1 и NB2 в таблице 1 приведены максимальные размеры транспортных блоков на прием и передачу согласно спецификации 3GPP 36.306 Release 14:

Таблица 1. Размеры транспортных блоков Cat. NB1, NB2 (Release 14)
Категория оборудования Максимальный размер транспортного блока на прием (DL), бит Максимальный размер транспортного блока на передачу (UL), бит
Category NB1 680 1000
Category NB2 2536 2536

Qualcomm в спецификации чипа MDM9206 (используется в модуле N20) приводит следующие скорости передачи в режиме Cat. NB1: прием (DL) – 20 кбит/с, передача (UL) – 60 кбит/с:https://www.qualcomm.com/products/mdm9206-iot-modem

Аналогичные результаты для NB1 приводят коллеги из МТС, упоминая, что для категории NB2 максимальная скорость приема/передачи составит более 100 кбит/с:https://habr.com/company/ru_mts/blog/430496/

Но, насколько понимаю, речь идет о физической скорости в канале связи, соответственно, реальная скорость передачи данных будет намного меньше. К сожалению, на данный момент экспериментальными данными о максимальной скорости передачи в режиме NB-IoT я не располагаю.

Дальнейшее развитие LTE

«Настоящий» 4G должен предоставлять скорость передачи данных до 1Гбита/с. Но первый LTE-стандарт до этих цифр явно недотягивал. На то, чтобы достигнуть указанного значения, ушло ещё полдесятилетия. Так появился стандарт LTE Advanced (4G+). Роста скоростей удалось достичь за счет:

  • модернизации технологии упаковки пакетов с данными;
  • увеличения ширины полосы сигнала;
  • использования нескольких передатчиков для работы с одним абонентом.

Карту покрытия сетей связи всех стандартов в своем городе вы можете посмотреть на сайте Минкомсвязи.

С момента официального объявления о создании технологии и по сей день ведется активная работа для того, чтобы сделать передачу данных быстрее. За 11 лет внедрено множество решений. Но в перспективе LTE всё равно уступает 5G, потому что не может выдержать увеличивающийся поток технических средств.

Примечания

  1. Sauter, Martin.  (недоступная ссылка) (21 Nov 2013). — « here’s what had to say to solve the mystery: ‘ three in the home network and one roaming client.’ There you go, an answer from the prime source!». Дата обращения 23 ноября 2013.
  2. Андрей Анканов.  (недоступная ссылка). mobnews.ru. Дата обращения 19 ноября 2012.
  3.  (недоступная ссылка). Дата обращения 9 сентября 2011. Мировой стандарт. Тридцать лет с GSM. Хронология развития стандарта GSM
  4. ↑ В стандартном режиме теоретическое ограничение дальности — 35 километров, но в режиме Extended Cell (ECell) допустимы разговоры на расстояниях до 120 километров  (недоступная ссылка). Дата обращения 31 декабря 2009. .

Первое поколение сотовой связи

Сейчас самое первое поколение сотовой связи принято называть 1G. Но в годы действия этих сетей никто о таком понятии не подозревал, тогда многие люди не думали о том, что в ближайшем будущем сотовая связь станет совсем другой. Итак, что же представляло собой первое поколение?

Фактически это была аналоговая связь. Её запуск был осуществлён компанией AT&T, а первый звонок состоялся 3 апреля 1973 года — его совершил Мартин Купер, являвшийся главой мобильного подразделения Motorola. Как и в случае со стационарной аналоговой связью, теоретически сотовый телефон можно было задействовать в качестве модема. Но решиться на это мог только какой-нибудь миллионер, ведь минута разговора в те времена стоила огромных денег.

Как и в случае с последующими поколениями, 1G — это лишь название, объединяющее под собой несколько разных стандартов. В Канаде, США, Австралии, а также Южной и Центральной Америке применялся стандарт AMPS. В странах Скандинавии и некоторых государствах получил распространение стандарт NMT и его разновидности. Ну а в Италии, Испании, Англии, Австрии, Ирландии и Японии применялось сотовое оборудование стандарта TACS. И это только три самых популярных варианта реализации сетей! Все эти стандарты были совершенно несовместимы друг с другом. Поэтому британец, приехавший в Америку, не мог разговаривать по своему собственному телефону. Друг от друга разные стандарты отличались не только диапазоном частот, но и радиусом соты, мощностью передатчика, временем переключения на границе соты и соотношением сигнала к шуму. Подробнее со всеми спецификациями вы можете ознакомиться в прилагающейся табличке.

Обычным людям сотовая связь первого поколения стала доступной далеко не сразу. Первое десятилетие некоторые компании занимались только экспериментами. Коммерческая реализация произошла только в 1984 году. Достаточно быстро стало ясно, что аналоговая сотовая связь имеет ряд недостатков. Во-первых, каждая сота имела малую ёмкость — при подключении к ней большого количества абонентов начинались серьезные проблемы. Во-вторых, качество сигнала было далеко от идеала, особенно если абонент находился не на улице, а в здании. Первыми об этих проблемах задумались европейцы. Они начали разрабатывать цифровую связь.

Команды управления устройством NB-IoT (AT-команды)

Стандартные AT-команды описываются в спецификации 3GPP TS 27.007. Всего команд очень много, здесь рассмотрим только те, с помощью которых можно управлять режимами энергосбережения устройства NB-IoT. Кроме того, разные производители могут немного по-своему интерпретировать стандартные или изобретать новые команды. Поэтому для большей определенности посмотрим команды NB-IoT-модуля N21.

Команда управления режимом PSM

Для задания параметров режима PSM используется команда AT+CPSMS:

Параметры команды AT+CPSMS:

  • mode (0 — PSM выключен, 1 — PSM включен)
  • Requested_Periodic-RAU, T3312 (применим к 2G/3G, в NB-IoT не используется)
  • Requested_GPRS-READY-timer, T3314 (применим к 2G/3G, в NB-IoT не используется)
  • Requested_Periodic-TAU, T3412 (применим к LTE, используется в NB-IoT)
  • Requested_Active-Time, T3324 (применим к 2G/3G/LTE, используется в NB-IoT)

Таким образом, для настройки параметров PSM в режиме NB-IoT используются три параметра: mode, Requested_Periodic-TAU и Requested_Active-Time.

Запрашиваемая длительность нахождения устройства в режиме PSM — это разница между значениями Requested_Periodic-TAU и Requested_Active-Time.

Кодирование значения Requested_Active-Time (T3324)

Requested_Active-Time кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, биты 5, 4, 3, 2, 1 – значение.

Таблица 1. Множители Requested_Active-Time (T3324)
Бит 8 Бит 7 Бит 6 Множитель
2 секунды
1 1 минута
1 6 минут (1/10 часа)
1 1 1 Таймер деактивирован
Другие значения должны быть интерпретированы как 1 минута (в текущей версии протокола)

Пример кодирования значения Requested_Active-Time (T3324):
00000101 — Requested_Active-Time
000 – множитель, 2 секунды,
00101 – значение, 5,
5 х 2 секунды = 10 секунд — запрашиваемое значение Requested_Active-Time.

Максимальное значение Requested_Active-Time (T3324) составляет 3 часа и 6 минут (186 минут).

Кодирование значения Requested_Periodic-TAU (T3412)

Requested_Periodic-TAU кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, младшие биты 5, 4, 3, 2, 1 – значение.

Таблица 2. Множители Requested_Periodic-TAU (T3412)
Бит 8 Бит 7 Бит 6 Множитель
10 минут
1 1 час
1 10 часов
1 1 2 секунды
1 30 секунд
1 1 1 минута
1 1 320 часов. Примечание: данное значение применимо только к таймерам T3312 extended и T3412 extended (см. TS 24.301). Если оно принято в сообщении с включенной проверкой целостности, значение должно быть интерпретировано как 320 часов. В противном случае оно должно быть интерпретировано как 1 час.
1 1 1 Таймер деактивирован

Пример кодирования значения Requested_Periodic-TAU (T3412):
00100001 — Requested_Periodic-TAU
001 – множитель, 1 час,
00010 – значение, 2,
2 х 1 час = 2 часа — запрашиваемое значение Requested_Periodic-TAU

Максимальное значение таймера Requested_Periodic-TAU T3412 составляет 9920 часов или 413 дней и 8 часов.

Примеры команды AT+CPSMS

Команда управления режимом eDRX

Для задания параметров режима eDRX используется команда AT+CEDRXS:

Параметры команды AT+CEDRXS:

1. mode — режим:

  • 0 — режим eDRX выключен
  • 1 — режим eDRX включен
  • 2 — режим eDRX включен, разрешены незапрашиваемые сообщения (URC)

2. AcT-type — технология радиодоступа:

  • 1 – EC-GSM-IoT
  • 2 – GSM
  • 3 – 3G
  • 4 – LTE, LTE-M
  • 5 – NB-IoT

3. Requested_eDRX_value — длительность периода eDRX. Значение кодируется в виде двоичной последовательности, состоящей из 4-х бит. Согласно спецификации 3GPP TS 23.682, период eDRX в режиме NB-IoT находится в диапазоне от 20,48 до 10485,76 секунд. Значения Requested_eDRX_value в режиме NB-IoT приведены в таблице 3.

Таблица 3. Длительность периода eDRX
Requested_eDRX_value в режиме NB-IoT Длительность периода eDRX, с
0010 20,48
0011 40,96
0100 20,48
0101 81,92
0110 20,48
0111 20,48
1000 20,48
1001 163,84
1010 327,68
1011 655,36
1100 1310,72
1101 2621,44
1110 5242,88
1111 10485,76

Примеры команды AT+CEDRXS

P.S. Статья не претендует на абсолютную истину и может содержать неточности. Если вы заметили неточности, хотите поделиться инсайдерской информацией или просто высказать своё мнение – добро пожаловать в комментарии!

Предыдущая часть: NB-IoT, Narrow Band Internet of Things. Общая информация и особенности технологии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector