Обзор мозгокомпьютерного интерфейса emotiv epoc

Нейроинтерфейс для управления электронными и мехатронными средствами силой мысли.

Нейроинтерфейс мозг-компьютер основан на преобразовании намерений пользователя, отраженных в электрических сигналах головного мозга, в управляющие команды. Нейромышечный интерфейс – средство регистрации двигательных намерений пользователя, основанное на регистрации изменений сигналов нейромышечной активности сохранившихся мышечных волокон с помощью поверхностно-закрепляемых датчиков.

Описание неинвазивного интерфейса мозг-компьютер:

Нейроинтерфейс мозг-компьютер основан на преобразовании намерений пользователя, отраженных в электрических сигналах головного мозга, в управляющие команды.

Нейроинтерфейс имеет механизм адаптивной цифровой обработки электрической активности мозга и неинвазивный метод работы.

Его ноу-хау — особые сухие электроды, которые встраиваются в шлемовидный интерфейс и позволяют без прямого контакта с головным мозгом регистрировать намерения человека с очень высокой точностью.

Специальная программа, встроенная в нейроинтерфейс, обрабатывает сигналы головного мозга и «очищающет» их от помех. За счет этого, устройство может использоваться не только в “идеальных” лабораторных условиях: оно устойчиво работает в местах большого скопления людей, в транспорте, в окружении большого числа передающих устройств. Точность обработки сигнала при этом не падает.

Нейроинтерфейс мозг-компьютер применяется:

– для реабилитации инвалидов с моторными нарушениями различной этиологии,

– для протезирования верхних и нижних конечностей,

– для обеспечения взаимодействия пользователей с электронными и электронно-механическими устройствами,

– для управления экзоскелетными решениями.

Преимущества нейроинтерфейса мозг-компьютер:

– регистрация намерений человека с очень высокой точностью,

– регистрация намерений без прямого контакта с головным мозгом,

– реализован механизм адаптивной цифровой обработки электрической аткивности мозга и неинвазивный метод работы,

– используются особые сухие электроды, которые встраиваются в шлемовидный интерфейс.

Описание нейромышечного интерфейса:

Нейромышечный интерфейс – средство регистрации двигательных намерений пользователя, основанное на регистрации изменений сигналов нейромышечной активности сохранившихся мышечных волокон с помощью поверхностно-закрепляемых датчиков.

Экзопротезы несут совершенно новые возможности для людей с ограниченными возможностями, которые сегодня не могут полноценно жить и двигаться.

При создании роботизированных экзопротезов используются последние достижения в области компьютерных технологий, материаловедения, робототехники, нейрофизиологии и нейропсихологии.

Применение нейромышечного интерфейса:

– для реабилитации инвалидов с моторными нарушениями различной этиологии,

– для протезирования верхних и нижних конечностей,

– для управления экзоскелетными решениями.

Преимущества нейромышечного интерфейса:

– форма и конструкция электродов датчиков разработаны с учетом удобства постоянного ношения, и не причиняют неудобств пользователю,

– после регистрации и обработки данных, сигнал пропорционального управления передается к исполнительным механизмам посредством проводного или беспроводного каналов связи, в зависимости от мест размещения датчиков,

– удобное применение: адаптивная подстройка под постоянно изменяющиеся параметры электро-мышечных потенциалов пользователя.

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

алгоритмы удаления артефактов принцип работы нейроинтерфейс своими руками глухие neurosky arduino ээг задачи купить в москве проектировщик нейроинтерфейсовигры конструкторы игрушки с нейроинтерфейсом купитьмариинский театр постановка нейроинтерфейсынейроинтерфейс мозг-компьютер для реабилитации и пр. проектировщик разработчик разработка нейроинтерфейсов купить своими руками это muse brainlink emotiv insight схема arduino

Коэффициент востребованности
585

С чего все начиналось

Интерес к изучению мозга техническими методами возник сравнительно недавно — примерно на рубеже XIX и XX веков. В 1920-х годах исследователь Эдгар Эдриан предположил, что нейроны генерируют электрические импульсы и служат базовым элементом куда более сложной структуры. Позже Дональд Хебб разработал (1949) теорию пластичности синаптической передачи и нейронных ансамблей, что перевернуло представление об обязанностях, «закрепленных» за конкретными областями коры головного мозга. Оказалось, что при необходимости нейроны охотно меняют свои функции и нельзя выделить какую-то одну группу, отвечающую, например, за навыки информационной безопасности.

В 1960-х в лаборатории нейронального контроля Национального института здоровья США впервые попытались записать и обработать электрический сигнал с нейронов подопытной обезьяны. Пару десятилетий спустя эта же группа ученых экспериментировала с анализом мозговой деятельности уже в реальном времени, позволяя пациентам зажигать лампочки светового табло «силой мысли». Открывшиеся возможности окрылили исследователей, и варианты прикладных применений не заставили себя долго ждать. Первая научная статья, описывающая успешные эксперименты с «виртуальной клавиатурой» для парализованных людей, вышла в 1999 году (Нилс Бирбаумер).

Увы, мыслительные процессы человека оказались устроены гораздо сложнее, чем изначально предполагали ученые. Этим объясняется некоторый спад интереса к нейроинтерфейсам в начале XXI века. Однако история циклична, и сегодня многие проекты переживают второе рождение.

Кроме АЦП, существенно продвинулись по характеристикам инструментальные усилители, входное сопротивление которых приближается к тераомам, а коэффициент усиления составляет десятки тысяч раз. При этом собственные токи утечек и токовый шум не превышают одного пикоампера, что помогает разработчикам проектировать крайне чувствительные схемы съема биопотенциалов.

Из более очевидных вещей: производительность наших компьютеров выросла в десятки раз. Не в последнюю очередь это стало возможным благодаря использованию GPU-, FPGA- и ASIC-микросхем для анализа сигналов в реальном времени. Кроме того, весьма популярная сегодня модель организации вычислений в облаке позволяет компаниям легко арендовать необходимые мощности, концентрируясь на главном.

Во-вторых, вместе с аппаратной частью эволюционировали и возможности нашего программного обеспечения. Появились дружественные к исследователям фреймворки, высокоуровневые языки программирования и многочисленные способы визуализации и классификации информации. Например, сегодня с помощью нейросети можно легко отслеживать возникающие события и корреляцию даже в зашумленных рядах данных.

Ниже на рисунке изображены основные группы алгоритмов, которые используются для поиска особенностей сигнала в реальном времени.

Что касается основного источника информации для интерфейса «мозг — компьютер», то тут особых изменений не произошло. Сегодня наиболее часто используются сигналы с электроэнцефалограмм. Альтернативным способом может быть функциональная магнитно-резонансная томография (fMRI) и магнитоэнцефалография. Однако, как ты понимаешь, разработать компактный томограф практически невозможно, а многомиллионная стоимость готовых аппаратов ограничивает их использование только крупными коллективами в компаниях и институтах.

Device Interaction

Another desirable purpose of brain computer interfaces is the direct control of devices. (This is where we start rubbing our hands together gleefully). Think of this as WiFi for the brain, where we can control mobile phones, printers, and even cars with our thoughts. Testing of this technology to control lights, robotic prosthetics, and vehicles are yielding encouraging results. Although most of the studies and testing are in the medical field, the potential of these interfaces in AR and VR gaming are going to drive investments in this area.

Investments in this field are coming into companies like Neurable and ThynkWare Innovation, both of which are developing platforms for controlling everyday devices. The science of this technology is hinged on the ability of digital technology to access impulses sent by the brain to certain muscle groups for motor function. Mapping of brain activity and correlating it to certain motor functions is already helping people with disabilities or neurological disorders.

This paves the way for a specialized field of neurology called “neuroprosthesis” which is the idea of augmenting the brain with devices. Companies like MYOMO,  Neuropace, BrainRobotics, and Bryan Johnson’s Kernel Co are already making some strides in this area. We’ll explore this more in a coming article on neuroprosthesis and look at some of the investment opportunities opening up.

Попытки создания

В нейрохирургическом центре в Кливленде в 2004 году был создан первый искусственный кремниевый чип — аналог гиппокампа, который в свою очередь был разработан в университете Южной Калифорнии в 2003 году. Кремний обладает возможностью соединять неживую материю с живыми нейронами, а окруженные нейронами транзисторы получают сигналы от нервных клеток, одновременно конденсаторы отсылают к ним сигналы. Каждый транзистор на чипе улавливает малейшее, едва заметное изменение электрического заряда, которое происходит при «выстреле» нейрона в процессе передачи ионов натрия.

Новая микросхема способна получать импульсы от 16 тысяч мозговых нейронов биологического происхождения и посылать обратно сигналы к нескольким сотням клеток. Так как при производстве чипа нейроны были выделены из окружающих их глиальных клеток, то пришлось добавить белки, которые «склеивают» нейроны в мозге, также образуя дополнительные натриевые каналы. Увеличение числа натриевых каналов повышает шансы на то, что транспорт ионов преобразуется в электрические сигналы в чипе.

Brain Enhancement

You probably don’t need to read much more than the deadline to realize where this is going. What’s that little Johnny? Having problems with your homework? Just put on this brain enhancement hat and you’ll be right as rain.

Brain enhancement through brain computer interfaces can be made possible by providing a platform for:

  • Enhancing the brain’s capability to learn.
  • Increasing intelligence and improving memory retention.
  • Healing the brain by re-establishing synaptic connections.

Clinical trials conducted by a company called NeuroLutions on the application of this technology, have shown that it can trigger the creation of synaptic connections in the brain, providing medical intervention to those disabled by stroke.  Stroke is ranked No. 5 as a killer in the United States, killing 130,000 out of 800,000 hit by this disabling disease costing a staggering $34 billion each year in terms of health care costs.

This technology, once it reaches the product development phase, will have an impact on people with learning disorders, educational institutions hoping to improve learning environments, and people suffering from memory loss and other neurological disorders. NeuroLutions, Rythm, Cerêve, BrainCo, InteraXon, and MindMaze are companies to watch out for in terms of investing in this space.

Нейроинтерфейсы сегодня

Снятие сигналов ЭЭГ, как и любых других малых аналоговых сигналов, — задача весьма непростая: их характеристики нестационарны, они подвержены внешнему шуму и могут влиять друг на друга. Существующие на данный момент проекты клавиатур и прочих устройств ввода предполагают использование внешнего стимула. Возникающий ответный отклик и будет улавливаться сенсорной частью BCI (Brain Computer Interface). Согласись, гораздо проще установить событие, когда ты точно знаешь, когда именно оно должно было произойти.

В общем случае стимулы можно разделить на две основные группы. Event Related Potentials (ERPs) — это сигналы мозга, генерируемые в ответ на ощущаемые или когнитивные события (громкий звук, резкий запах). А Visualy Evoked Potentials (VEPs) — это сигналы, подкрепленные каким-либо визуальным воздействием.

Думаю, проще пояснить на примерах: когда у человека стоит задача выбрать один предмет из многих изображенных, работает принцип ERP. В ответ на нужный стимул с определенной задержкой возникает хорошо регистрируемый системами ЭЭГ однократный сигнал. Если же в область внимания человека попадает мерцающий с определенной интенсивностью графический объект и есть возможность захватить переменный сигнал от электродов на соответствующей частоте — это система VEP.

Наиболее широко используется сегодня метод SSVEP (Steady State VEP). Это такой формат визуальной клавиатуры, в котором каждому элементу соответствует своя уникальная частота мерцания. Пользователь при этом имитирует нажатие кнопки с помощью фокусировки внимания на нужном компоненте интерфейса.

Как правило, активность участков мозга в ЭЭГ принято делить по наблюдаемой частоте (в герцах): дельта (), тета (), альфа (), бета () и гамма (). Для анализа сигналов человеческой моторики (в том числе движений пальцев при наборе на клавиатуре) используется в основном анализ альфа- и бета-активности.

Впрочем, не все так просто. Качество снимаемых электроэнцефалограмм сильно зависит от множества сторонних факторов, вплоть до состояния здоровья и текущего настроения человека. Поэтому многие реально существующие системы часто не только подгоняют под конкретного пользователя, но и обязательно калибруют время от времени.

Вариант 1. Присоединись к сообществу «Xakep.ru», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score!
Подробнее

Вариант 2. Открой один материал

Заинтересовала статья, но нет возможности стать членом клуба «Xakep.ru»? Тогда этот вариант для тебя!
Обрати внимание: этот способ подходит только для статей, опубликованных более двух месяцев назад.

Я уже участник «Xakep.ru»

Ранние работы

Исследования, в результате которых были разработаны алгоритмы для реконструкции движений из сигналов нейронов моторной зоны коры головного мозга, которые контролируют двигательные функции, датируются -ми годами. Исследовательские группы, возглавлявшиеся Шмидтом, Фетзом и Бейкером в -х установили, что обезьяны могут быстро обучаться избирательно контролировать скорость реакции отдельных нейронов в первичной двигательной коре головного мозга используя замкнутое позиционирование операций, обучающий метод наказания и наград.

В -х Апостолос Георгопоулос из Университета Хопкинса обнаружил математическую зависимость между электрическими ответами отдельных нейронов коры головного мозга у макак резус и направлением, в котором макаки двигали свои конечности (на основе функции косинуса). Он также обнаружил, что разные группы нейронов в различных областях головного мозга совместно контролировали двигательные команды, но были способны регистрировать электрические сигналы от возбужденных нейронов только в одной области одновременно из-за технических ограничений, налагаемых его оборудованием.

С середины 1990-х годов началось быстрое развитие НКИ. Нескольким группам ученых удалось зафиксировать сигналы двигательного центра мозга используя записи сигналов от групп нейронов, а также использовать эти сигналы для управления внешними устройствами. Среди них можно назвать группы, возглавлявшиеся Ричардом Андерсеном, Джоном Донахью, Филиппом Кеннеди, Мигелем Николелисом, Эндрю Шварцом.

BrainReader российского производства

Предсерийный образец шлема-нейроинтерфейса в прошлом году был представлен на выставке БИОТЕХМЕД. Над созданием технологии работал Институт электронных управляющих машин (ИНЭУМ) им. И.С. Брука, входящий в состав концерна «Автоматика».

В разработке реализован механизм адаптивной цифровой обработки электрической активности мозга и неинвазивный метод снятия данных на основе сухих электродов.

Одно из главных преимуществ – удобство применения. Интерфейс встроен в специальный шлем, который можно легко снять и надеть любой человек без дополнительной помощи. Сухие электроды не нужно смачивать электропроводящим гелем. 

Точность обработки сигнала при этом не падает даже в местах большого скопления людей, в транспорте, в окружении большого числа передающих устройств. Специально для этого была создана программно-аппаратная платформа, обрабатывающая сигналы и «очищающая» их от помех. Электроды нейроинтерфейса – это, фактически, антенна, которая ловит весь эфир. При этом сигналы, идущие от мозга, слабее естественного шума. Специальный алгоритм обработки этих сигналов является одной из ключевых особенностей отечественной разработки.

Ожидается, что шлем-нейроинтерфейс выпустят в продажу уже в 2019 году. При этом «Автоматика» планирует вывести новинку и на международный рынок, под названием BrainReader. Как считают эксперты, устройство имеет хороший экспортный потенциал. Ближайший по характеристикам конкурент – американская нейрогарнитура – стоит примерно в три раза дороже.

Концерн «Автоматика» уже приступил к получению разрешительной документации для выхода на рынки стран Азии. Предложения от азиатских компаний, в частности из Индонезии и Малайзии, о дистрибуции BrainReader поступили по результатам участия в выставке Medlab AsiaPacific & Asia Health 2019, где возможности российского устройства вызвали большой интерес. 

НКИ и нейропротезирование

Нейропротезирование — область неврологии, занимающаяся созданием и имплантацией искусственных устройств для восстановления нарушенных функций нервной системы или сенсорных органов (нейропротезов или нейроимплантов). Наиболее часто используется кохлеарный нейроимплантат, которым пользуется около 100 000 человек по всему миру (по данным на 2006 год). Существуют также нейропротезы для восстановления зрения, например, имплантаты сетчатки.

Основное отличие НКИ от нейропротезирования заключается в особенностях их применения: нейропротезы чаще всего «подключают» нервную систему к имплантированному устройству, в то время как НКИ обычно соединяет мозг (или нервную систему) с компьютерной системой. На практике нейропротез может быть подсоединен к любой части нервной системы, например, к периферическим нервам, в то время как НКИ представляет собой более узкий класс систем, взаимодействующих с центральной нервной системой.
Термины нейропротезирование и НКИ могут быть взаимозаменяемыми, поскольку оба подхода преследуют одну цель — восстановление зрения, слуха, двигательных способностей, способности общаться и других когнитивных функций. Кроме того, в обоих подходах используются аналогичные экспериментальные методы, включая хирургическое вмешательство.

Neurofeedback

Neurofeedback is conventionally known in psychotherapy circles as “EEG biofeedback” which is based almost exclusively on electroencephalography (no way you can say that out loud). In case you don’t sit around memorizing words like that, here’s a definition:

Since the first human EEG was recorded by Hans Berger in 1924, this discovery has become the basis for almost everything related to brain activity and brain mapping. Here’s a look at a boy wearing an EEG cap that captures the signals from his brain:

Boy in a special cap during electroencephalography next to the monitor with readings

The use of digital technology has enhanced significantly in mapping the brain’s activity. It is important to note that a lot of the data on EEG was derived from the studies performed on human eye movement as it correlates with specific brain waves being emitted in specific areas of the brain. Technological advancement in the targeting system of military aircraft can be attributed to the extensive knowledge gained from these studies. Naturally, the potential for similar applications has attracted investment into this field.

Neurofeedback provides feedback to researchers and medical practitioners as to the state of mind or intensity of brain activity so specific intervention can be administered to achieve the desired result. The research and product innovations in virtual reality (VR), augmented reality (AR) and even innovative learning approaches are creating opportunities for the development of brain interfaces for neurofeedback. Remember how Affectiva can tell your emotions by looking at your face? How about a brain computer interface that reads your emotions by looking at your brain waves?

To Conclude

Developments in brain computer interface, BMI or BCI, will revolve around the above three purposes or a combination of these purposes. Don’t be surprised if you see a number of BCI or BMI start-ups getting into AR or VR markets even though the primary application is medical. It is both a technical and a marketing strategy. The best way to test mainstream application is in gaming. Gaming tests the logic of software and the adaptability of hardware. The financial rewards received from getting into the AR and VR markets help fund further research into the technology. This is the sort of money they’re going to be siphoning:

Are we going to see a future with no remote controls, pointers, mouse or even keyboards? Let’s hope so because our hands can only type so fast. In a coming article, we’re going to discuss 12 companies breaking ground on brain computer interface applications to get a glimpse of what investments are being made in this space. Some of these companies will blur the lines between weird brain science and applied technologies. We can barely contain our nerdy excitement.

Here at Nanalyze, we complement our tech investments with a portfolio of 30 dividend growth stocks that pay us increasing income every year. Learn how to build your own dividend growth stock portfolio in our report on Quantigence — A Dividend Growth Investing Strategy — freely available to Nanalyze Premium subscribers.

Обучение на Разработчика нейроинтерфейсов

В настоящий момент в нашей стране нет возможности получить образование по специальности «разработчик нейроинтерфейсов». Кроме того, выбор программы обучения во многом зависит от специализации. Один из наиболее логичных путей — это получение биоинженерного образования. Альтернативные варианты — электротехническое образование с дополнительными знаниями в области биологии и нейрофизиологии или высшее нейробиологическое образование в сочетании со знаниями и навыками в области программирования.

Вузы

Вот некоторые возможные варианты:

  • Биотехнические и медицинские аппараты и системы (МЭИ, МАИ);
  • Биомедицинская инженерия (МИЭТ);
  • Нейротехнологии и программирование (ИТМО);
  • Эргономический анализ интерфейсов и перспективных технических систем (Московский политех);
  • магистерская программа «Когнитивные науки: от нейрона к познанию» (ВШЭ).

Профильные дисциплины:

  • программирование;
  • управление сложными автоматизированными системами;
  • нейробиология и нейрофизиология;
  • разработка искусственного интеллекта;
  • физика;
  • математика;
  • механика.

Профессионально важные качества:

  • умение работать в команде;
  • научно-исследовательский интерес;
  • системное мышление;
  • готовность к работе в междисциплинарной области.

Возможные места работы:

  • биотехнологические компании;
  • ИТ-компании;
  • компании, специализирующиеся на робототехнике;
  • компании, разрабатывающие нейроинтерфейсы;
  • разработчики в сфере индустрии развлечений;
  • протезно-ортопедические компании;
  • научно-исследовательские лаборатории.

Как это работает: не телепатия и не телекинез

Конечно, новые технологии предоставили новые невероятные возможности в этой сфере, но принципиальная идея нейроинтерфейса такая же, как и полвека назад. В интерфейсе «мозг – компьютер» нет ничего мистического: технология позволяет регистрировать электрическую активность мозга и преобразовывать ее в команды для внешних устройств.

«Это не телепатия и не телекинез: в нейроинтерфейсах мысленные команды человека расшифровываются по записи электрической активности его мозга, или электроэнцефалограммы. Той самой, которую записывают в каждой поликлинике», – объясняет психофизиолог Александр Каплан, завлабораторией нейрофизиологии и нейроинтерфейсов биологического факультета МГУ. 

Считывание сигналов мозга производится с помощью инвазивных (вживляемых в мозг пациента) датчиков или неинвазивных датчиков, которые регистрируют ЭЭГ с поверхности головы.

Итак, для инвазивного нейроинтерфейса требуется операция: электроды вживляются прямо в кору мозга. Выглядят они как маленькая пластинка, примерно пять на пять миллиметров, которая покрыта сотнями иголочек-электродов. Они регистрируют электрическую активность отдельных нервных клеток в том месте, куда внедрены. Такие датчики отличаются более сильным сигналом, однако инвазийное вмешательство сопряжено с последствиями для здоровья человека. Даже отличные характеристики датчиков нового поколения могут вызвать ряд проблем: риск воспалений, необходимость повторной имплантации из-за отмирания нейронов и даже такие необъяснимые последствия, как эпилепсия. Поэтому такие интерфейсы используют в крайних случаях, для тяжелобольных пациентов, которым не могут помочь другие методы.

Неинвазивный нейроинтерфейс не предполагает вторжения в организм – электроды прикрепляют к коже головы. Несмотря на то что мозг располагается глубоко в черепе, электрические поля, создаваемые нервными клетками, улавливаются электродами на поверхности головы. Этот метод уже давно применяется при снятии электроэнцефалографии. С использованием нейрогарнитуры возможно построить интерфейс «мозг – компьютер», обеспечивающий точность распознавания команд пользователя до 95%. 

В свою очередь, неинвазивные нейроинтерфейсы могут быть на «мокрых» и «сухих» электродах. В первом случае электроды с подушечками нужно смачивать и лишь затем прикреплять к голове. Как известно, жидкость служит проводником электричества и облегчает снятие данных. Однако у такого метода есть недостатки, и это не только мокрые волосы.

Нейроинтерфейсы на сухих электродах выглядят в виде шлема, который можно легко надеть без какой-либо дополнительной помощи и подготовки. Специальные электроды не требуют использования электропроводящего геля, при этом высокое качество регистрируемого сигнала обеспечивает система активного подавления помех. К примеру, подобный нейроинтерфейс разработал концерн «Автоматика» Госкорпорации Ростех.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector